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Abstract- It is important to know the information flow between 
active regions in the brain for the elucidation of the information 
processing mechanism and for the disease detection in the 
human brain. In this paper, at first, we estimate dipoles (via 
3-layered concentric spherical model, 2-dipole estimation) from 
evoked potentials. Secondary, using derived 2 dipole locations 
and moments as loci and quantities of brain activities, we 
analyze the information flow between the two time-series of the 
1st and the 2nd dipole moments by use of the time-series 
analysis method based on the directed transinformation. We 
obtain bidirectional information flows between the neuronal 
activities localized in 3D space of the brain with respect to 
somatosensory evoked potentials measured with 21 electrodes 
arranged according to the international 10-20 standard by 
electrical stimulations on the median nerve of the right hand. 
Keywords - Dipole Tracing Method, Directed Transinformation, 
3D-display, Information Flow, Evoked Potentials 
   

I. INTRODUCTION 

  
Recently, an information flow between the scalp 

potentials measured by multiple electrodes is reported [1]. 
However, it was not possible to reveal the three-dimensional 
information flow within the brain, because this method is 
based on the assumption that the intra-cranial activities might 
be indirectly estimated by the information flow between the 
two-dimensional specified points on the scalp. Therefore, it 
was not sufficient for the elucidation of the information 
processing mechanism and the detection of disease in which 
the deeply seated neuronal activities are involved. 

In the present study, we make dipole localization (via 
3-layered concentric spherical model, 2-dipole estimation) of 
evoked potentials (EPs) measured with multiple electrodes to 
quantitatively estimate neuronal activities in the brain. Then, 
we analyze the bidirectional information flows between 
equivalent dipoles representing neuronal activities in the 
specified locations of the brain as schematically shown in 
Fig. 1. Our new method requires high time-resolution data 
such as EP, and will give a 3D information flow estimate 
almost automatically, with small number of pre-set 
parameters adequately adjusted. 

  
II . METHODOLOGY 

  
A flow chart of the analysis method is shown in Fig. 2. 

First, two equivalent dipoles are estimated from given EPs 
[2][3][4], and then an information flow is analyzed between 
the two dipoles from correlation analysis of time variations 
of dipole moments [5]. In the dipole estimation, we 
developed a method to align the time-series of the 1st and the 
2nd dipoles because in the two-dipole estimation at each 

  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
Fig. 1. Information flow between two time-series of 1st and 2nd dipoles 

by assuming 2 dipoles in 3-layered concentric spherical model 
  
time, locations of the two dipoles can be exchanged, if we do 
not pay attention for keeping the consistency in each series. 
  
A. Dipole Estimation 
  

The 2-dipole estimation in the 3-layered concentric 
spherical model [2][3] is carried out for all samples in a time 
range of EPs by setting the 3-layered structure, and all 
electrode positions on the 3rd layer of the sphere. The 
simplex method [4] is used to solve the inverse problem. The 
estimation is carried out six times for every sample from 
  

  
    

  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  

Fig. 2. Flow chart to obtain the information flow from EPs 
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each initial simplex position randomly chosen, and a result 
giving the best estimation accuracy is chosen from the six 
estimated ones. The dipolarity (%) shows the estimation 
accuracy as, 
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where, Pmeas and Pcal are the measured and the calculated 
scalp potentials based on the two-dipole model respectively, 
both expressed in n-dimensional column vectors composed 
of EPs on the n electrodes. The dipolarity ranges from 0 to 
100 % and shows that the estimated dipoles are suff iciently 
accurate as the value approaches to 100. 

As the result of the estimation, two time-series of the 1st 
and the 2nd dipoles are obtained. However, they become a 
mixed state from a time-series point of view, because the 
order of the estimated 1st and 2nd dipoles at each sample is 
indefinite. Therefore, we developed a method to align them. 
An explanatory drawing is shown in Fig. 3. D1, D2 show the 
1st and the 2nd dipole locations respectively at a sample time. 
M1 and M2 show the mean locations of the 1st and the 2nd 
dipoles respectively, averaged for several samples preceding 
to D1 and D2, with sufficiently high dipolarity. Thus, we 
define a criterion for the evaluation of "Proximity" as, 
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where, r1 and r2 show the distance between D1 and M1, D1 
and M2 respectively (or between D2 and M1, D2 and M2). 
Here we suppose, P1 and P2 as the criterion for D1, D2 
respectively. We perform the dipole alignment according to 
the following rule: 

If P1 > P2 ;  Exchange D1 and D2. 
If P1 >  P2 ;  No change. 

The alignment is carried out by the above exchange rule 
from the beginning to the end of the time-series with respect 
to the 1st and the 2nd dipoles for all samples. 

After the alignment, magnitude of the 1st and the 2nd 
dipole moments is calculated through all samples of the 
time-series. It is possible to regard the time-series of the 
magnitude of the 1st and the 2nd dipole moments derived 
through our method as being the time-series of the brain 
activities approximated by the two equivalent dipoles. 

 
  

 
 
 
 
 
  
 
 
 

 
 
 
 
 

Fig. 3. Explanatory drawing for the alignment of dipoles 

B. Information Flow 
  

Beforehand, each mean value of the derived time-series 
of the magnitude of the 1st and the 2nd dipole moments is 
set to zero respectively. Since then, by use of the time-series 
analysis method based on the directed transinformation [5], 
the analysis is carried out between these two time-series of 
the moments with each mean is zero. 

First, the correlation function of the two time-series is 
calculated. Next, the signal representation by 
two-dimensional AR model (autoregressive model) is carried 
out after the selection of the AR model order by FPE (final 
prediction error criterion). Then, the linear production model 
is constructed from the derived AR coeff icients. When the 
two time-series of the moments, X and Y, are shown as, 
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the directed transinformation from Xk to Yk+m is given by 
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and the directed transinformation from Yk to Xk+m is given 
by 
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where aXX, aXY, aYX and aYY are the linear filter coefficients 
(the impulse response coeff icients) in the linear production  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Result of SEPs for input of the analysis 
(21 electrodes of the international 10-20 standard, 

2kHz sampling rate, averaged for 500 times, positi ve up display) 

(5) 

(6) 

(4) 

(3) 
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TABLE I 
PARAMETERS USED FOR THE ANALYSIS 

Name Value (unit) 

analysis time range of SEPs 5– 105 (ms) 
radii for 1st, 2nd and 3rd layer 65, 71, 75 (mm) 
conductivities for 1st, 2nd and 3rd layer 0.33, 0.0042, 0.33 (S/m) 
number of sample to average for alignment 3 
threshold of dipolarity for alignment 95 (%) 
AR model order 30 
21 electrode positions 

name \  (deg) ]  (deg) name ^  (deg) ]  (deg) 
Fp1 64.75 18.03 F7 64.44 54.02 
Fp2 64.75 -18.03 F8 64.44 -54.02 
F3 39.52 45.00 T3 65.51 90.00 
F4 39.52 -45.00 T4 65.51 -90.00 
C3 36.16 90.00 T5 64.44 125.98 
C4 36.16 -90.00 T6 64.44 -125.98 
P3 39.52 135.00 Fpz 65.51 0.00 
P4 39.52 -135.00 Fz 36.16 0.00 
O1 64.75 161.97 Cz 0.00 0.00 
O2 64.75 -161.97 Pz 36.16 180.00 

 Oz 65.51 180.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Fig. 5. Result of the dipole moments before the alignment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Result of the dipole locations before the alignment, 

shown from 20.5 to 22.5 ms, 
length of the moment is 1 mm per 1 _ A ·  mm. 

model. In (5) and (6), I(* ` a b  shows the mutual information, 
and the direction is regulated automatically because k point 
of time is earlier time-related than k+m point of time. The 
directed transinformation is corresponding to the expanded 
one of Marko’s information [6] in order to obtain the mutual 
information between k and k+m point of time for finite 
time-series. Therefore, we obtain the bidirectional 
information flows by which both directed transinformation 
are calculated for all delays of m. Since this method is 
steady-state analysis expressed by AR model (stationary 
model), the information flow is same for any point of time k. 
   

III . RESULTS 

  
  We analyzed somatosensory evoked potentials (SEPs) 

evoked by the electrical stimulation on the median nerve of 
the right hand, as shown in Fig. 4. The parameters used for 
the analysis are shown in TABLE I. c  is the angle from the 
positive side of Z axis to XY plane, and d  is the one from  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Fig. 7. Result of the dipole moments after the alignment 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 8. Result of the dipole locations after the alignment, 

shown from 20.5 to 22.5 ms, 
length of the moment is 1 mm per 1 e A ·  mm. 
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Fig. 9. Result of the information flow 
  
the positive side of X axis to the positive side of Y axis. The 
AR model order is selected as 30 where FPE takes a 
minimal. 

The results of the dipole estimation before the alignment 
are shown in Figs. 5 and 6, and the ones after the alignment 
are shown in Figs. 7 and 8 respectively. The result of the 
bidirectional information flows is shown in Fig. 9. The 
positive side of the abscissa is the directed transinformation 
from the time-series of the 1st dipoles to that of the 2nd 
dipoles, derived by (5). The negative side of the abscissa is 
the directed transinformation from the time-series of the 2nd 
dipoles to that of the 1st dipoles, derived by (6). The 
horizontal scale is a time expression of the delay of m in (5) 
and (6).  
 

IV. DISCUSSION 
 

In comparing Fig. 5 and Fig. 7, the irregularity of 
Moment1 (time-series of the 1st dipole moments) and 
Moment2 (time-series of the 2nd dipole moments) in Fig. 5 
was eliminated in Fig. 7. And with Figs. 6 and 8, the mixed 
state of the dipole locations in Fig. 6 was solved in Fig. 8. 
These results proved the effectiveness of the alignment 
procedure we proposed. 

The result of the information flow in Fig. 9 shows that 
the information mainly flows from the time-series of the 1st 
dipoles to that of the 2nd dipoles. According to the 
neurophysiological knowledge of SEPs by the electrical 
stimulation on the median nerve of the hand, it is considered 
that the transmission route of the neuronal activities goes 
through the thalamus at about 15 ms latency, and reaches the 
somatic sensory area at about 20 ms latency. From Fig. 8, it 
is possible to consider that the time-series of the 1st dipoles 

 
 
 
 

reflects the neuronal activities of the thalamus, and the 
time-series of the 2nd dipoles reflects that of the somatic 
sensory area. Therefore, The result that the information 
mainly flows from the 1st dipoles to the 2nd ones, agrees 
with the knowledge that the neuronal activities move from 
the thalamus to the somatic sensory area. In addition, the 
result indicates that there might be a slight information flow 
from the 2nd dipoles to the 1st ones around the latency of 11 
to 15 ms (from –11 to –15 ms in Fig. 9). This indicates that 
there might be a feedback from the somatic sensory area to 
the thalamus. 
 

V. CONCLUSION 
  
We proposed an analysis method to reveal the 

three-dimensional bidirectional information flows within the 
brain, and applied it for actual experimental data of SEPs. In 
the method, the causal relation between the two time-series 
of the 1st and the 2nd dipoles is revealed, and its intensity is 
obtained as a time-series of information quantity (bit/sec). 
We confirmed that there are the bidirectional information 
flows between them, and mainly the time-series of the 1st 
dipoles is a cause and that of the 2nd dipoles is a result, in 
case of the SEPs. And it agreed with the neurophysiological 
knowledge. Thus, our method can be applied for the 
elucidation of the information processing mechanism and the 
disease detection in the brain, when the original data has a 
high time-resolution. 
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